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ABSTRACT 

The connections between inductive definability and models of comprehension 
are studied. Let 0// = (A, R,, • • .. R.) be an infinite structure and let I,  be a set 
inductively defined by a formula ~b of the second order language L'~. We prove 
that if M is a model of A~-Comprehension relativized to ~b, and <b is M-absolute, 
then for every rl smaller than the height of M (h(M)), I~ is in M. If M is a 
/3-structure which satisfies ~,-Comprehension relativized to ~b and WF(X), and 
q5 is M-absolute, then I, is in M and [l~bI< h(M). These results imply that 
Barwise-Grilliot theorem is false in the case of uncountable acceptable 
structures. We also study the notion of invariant definability over models,of 
Al-Comprehension. 

§1. Introduction 

This  p a p e r  is d e v o t e d  to  the  s tudy of connec t ions  be tween  induct ive  def inabi l -  

i ty and  mode l s  of c o m p r e h e n s i o n .  T h e  basic  ques t ion  to  which we want  to find an 

answer  is the  fol lowing.  

Let  0// be  an infinite s t ruc ture .  Suppose  that  I ,  is a set induct ive ly  def ined  by a 

second  o r d e r  fo rmula  4,. Which  p r o p e r t i e s  of a s econd  o r d e r  s t ruc ture  ag ove r  e// 

imply  that  I,~ or  some  of its s tages  1,~ be long  to lag l? 

W e  p rove  in §3 that  if ag satisfies A I - C o m p r e h e n s i o n  scheme re la t iv ized  to 4, 

and  4, is ag -abso lu te  then  for  eve ry  r/ sma l l e r  than the  he ight  of  ag (h(ag)) 
/: lagl. 

If we assume that  ag is a / 3 - s t r uc tu r e  for  which 4, is ag -abso lu te  and  ag satisfies 

E I - C o m p r e h e n s i o n  re la t iv ized  to 4, and  W F ( X )  then II 4, II < h (ag) and  I ,  ~ lag I- 

Using  these  resul ts  we p rove  that  B a r w i s e - G r i l l i o t  t h e o r e m  (see M o s c h o v a k i s  

[2] p. 140) is false in the  case  of  u n c o u n t a b l e  accep t ab l e  s t ructures .  
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The basic problem to which we are unable to find the answer is the following: 

is it true that hyperelementary relations on an arbitrary infinite structure 0-// form 

a model (the smallest one) of h l -Comprehension? 

In §4 we study the notion of invariant definability over models of A[- 

Comprehension.  We prove that if 0-// is a countable acceptable structure and T is 

an inductive theory in L~ which extends A[-Comprehension and has a model 

over 0// then the hyperelementary  relations of 0// are exactly the sets invariantly 

ddefinable over models of T. This theorem is not true in the case of uncountable 

acceptable structures. 

Finally we prove that if 0// is acceptable then for some inductive set I every set 

invariantly definable over  models of A[-Comprehension is hyperelementary in L 

Unfortunately we are unable to give the exact characterization of sets which 

are invariantly definable over  all models of A~-Comprehension in the case of an 

arbitrary infinite structure ~.  

We thank Mr. E. Aiward and Prof. G. Kreisel for helpful remarks about 

A[-Comprehensioa.  

§2. Preliminaries 

Throughout  the paper  the letters 7/, ,~, ~', or always denote  ordinals. If A is a set 

we use small latin letters to denote  the elements of A and capital letters to 

denote  relations on A of any (finite) number  of arguments.  By A "  (n _>- 1) we 

denote the set of all n-tuples of elements of A. If X is a set fg(X) denotes its 

power set. ~ denotes a sequence x t , ' - ' ,  x, of elements of A and )¢ denotes a 

sequence X , . . . ,  X,  of relations on A. 

For the convenience of the reader we recall here some definitions and 

notations which can be found in Moschovakis [2] and Moschovakis [3]. 

The first order language over  a set A, L A has an infinite list of individual 

variables x , y , z , . . - ,  a constant b for each element b of A, an infinite list 

X, Y, Z , -  • • of n-ary relation variables for each n _-> 1 and a constant P for each 

relation P on A. In forming formulas of L A the quantifiers :1 and ¥ are applied 

only to individual variables. 

The second order language over  A, L a is obtained by allowing quantification 

of the relation variables in the language L a. For convenience we assume that the 

formulas of the type X - Y are not well formed formulas (we may write instead 

Vx (X(x),---, V(x))). 
Let q/ = (A, R~,. •., R , )  be a structure (that is to say R , , . . . ,  R.  are relations 

over A) .  The first (second) order  language L~'(L~) for 0// consists of those 
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formulas of the language L A ( L  A) whose relation constants are among 

= ,  R~, • •., R.. We sometimes write 2 ~ X instead of X(2). 

Formulas of L ~ are called arithmetical formulas. All structures considered are 

infinite. 

M is called a second order structure over °R = (A ,  R I , - - - , R , )  if M = 

(A, [M [, R~, . . - ,  R, )  where I M I c  I..J.__.~ ~ ( A " ) .  While interpreting a formula 

of L~  on M we assume that the second order quantifiers of q5 range 

over tM[. For simplicity ~(OR) denotes the second order structure 

(A, U,,_-, ~ ( A " ) ,  R1,-. ", R,,}. 
We sometimes write cb(~,3~) instead of ~(OR)~ ~b(LX). 

DEFtNmON 1. Let M be a second order structure over OR. A formula 

c k ( x ~ , . . . , x ~ , X t , . . . , X , )  of L ~2 with free variables indicated is called 

M-absolute if 

A ~ ¢ k [ x , ' "  ",xk, X , ' "  . ,X,]  ¢:> ~(OR)I= d,[xl, -" " ,x . ,X1 , . . . ,X~]  

for all x~, . . . ,xk E A and X , . - . , X .  E I M[. 

WF(X)  is the following formula of L ~2 where OR = ( A , R , . . . , R . ) :  

W F ( X ) o X  is a well-founded transitive relation on A, i.e. 

W F ( X ) * * V x ,  y , z [ ( ( x , y ) E X  ^ ( y , z ) E X ) ~ ( x , z ) ~ X ]  

^ VS[::lx(x E S)--~ ::ly (y E S ^ Vx(x  E S --* (x, y) ~ X))] 

DEFtNITION 2. A second order structure M over OR is called a/3-structure if 

the formula WF(X)  is M-absolute. 

If ~b(x,, • •., xk, Xl," • ", X,)  is a formula of L~ with free variables indicated we 

say that ~b is a (k, rl, • • ", r, )-formula to indicate the fact that ~b has exactly k free 

individual variables and for every i -< n free variable X~ ranges over r~-ary 

relations. 

DEFINITION 3. Let ~b(LX,-.Y) be a (m, l , r , , . . . , r , ) - formula  of L~ and 

to(9,)7~, ~') be a ( l + p, p ,  . . ., p, )-formula of L~. Suppose that ~b(~, X, .,Y) and 

to(y,y,,?) have no variables in common. Then ¢k~(~ , to (y ,y ,Y) ,X)  is a 

(m +p, r l , . . . ,  r,, p ,  . . ., p, )-formula of L~ obtained from ~b(~,X,X) by replac- 

ing all the atomic formulas of the form ~? G X occurring in ~b(2, X,..Y) by 

~(z, ~,, 9). 

LEMMA 1. Suppose that ck(~, X, X )  and tO(y, ~ ,  ~') are formulas of L ~.which 

satisfy the above conditions. Then for all £, ~ ,  X and ~" 
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where 
A = {9: 9(°//)  I= tk(9, 91, ~')}. 

PROOF. By induction on the length of the formula (h(x, X, .~). [] 

DEFINITION 4. Suppose that X CA2 is a binary relation on A. Let 

Fld (X) = {x : 3y ((x, y) E X v (y, x) E X)}. 

If z ~ Fld(X) then 

X t ,  = { ( x , y ) : ( x , y ) E X  ^ ( y , z ) ~ X } .  

By transfinite induction we define the classes of well-founded transitive 

relations on A 

WF(tr) = {X: X is a well-founded transitive relation on A and 

Vz(z  E F I d ( X ) ~  X [z ~ WF(~') for some I- < or)}. 

It is easy to see then that 

WF(X)  ¢~ X ~ WF(or) for some or. 

Suppose that WF(X).  By IIX [I we denote the least or such that X ~ WF((r). If 

x E Fld (X) then I1X t, 11 < II X II. If (x, y) E X then X [, = X ry I'x. if o- < II x II then 

for some x E FId(X) or = Ilxtx II. 
If X and Y are two binary relations on A then by X = < Y  we mean the 

following formula of L A.2 • 

3 Z ( Z  is a 1-1 function from FId(X) into Fld(Y) 

and Yx, y ((x, y) ~. X ~ (Z(x), Z(y) )  E Y)). 

We define then 

X <  Y,-~::Iz (z E F i d ( Y ) ^ X  <= Y[,).  

It is easy to see then that if WF(Y)  then 

X ~ Y ~ ]I x ll <= ll Y ll, 

X < Y f f  II x II < ]1 Y II. 

DEFINmON 5. Let ~t be a second order structure over 0//. We define 

h ( ~ )  = sup(l[Xl[+ 1: ~ ( ~ ) ~  WF(X)  and X E I~t I). 

We call h (~t) the height of sit. 
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DEFINITION 6. Let yd be a class of structures over 0-// = (A, R~,. •., R,  ). Then 

fq ~ = { X : X  E [M~fora l lM E ~}, 

Def(Y{) = {X: X E U,__>L ~ ( A " )  and for some formula ~b(2) of L~ 

with free variables indicated which is M-absolute 

for all M E 

~(~t) ~ WZOZ e X ,~ 4'(~))}. 

Thus f-)yd is the intersection of all the structures belonging to Y( whereas 

Def(yd) is the collection of all sets invariantly definable over Yd. 

If T is a set of sentences of L~ (i.e. a theory in L ~ )  then 

M o d ( T )  = {M: M is a second order  structure over ~ and M I = T}. 

DEFINITION 7. Let ~bo be a formula of L~. Ar(¢0) is the smallest class of 

formulas of L~ such that 

(i) ¢o E  Ar(~b0), 

(ii) every arithmetical formula of L~ is in Ar(~b0), 

(iii) if ~, tp E Ar(~bo) then ~ b ,  ~b v 4, 3x~b E Ar(tk0). 

A formula ~b of L~ is a E~(tko) formula if it is of the form 3 X 1 . .  • 3X,~b for 

some formula ~b E Ar(<ko). 

We call a relation R ( ~ , X )  (RCA"x~(A' , )x . . .x~(A'~)  for some 

n, m , ' "  ", n~) arithmetical (E~) if for some arithmetical (E~1) formula ~b of L~ 

R = { ( £ 2 ) :  ~(a/ / )~  ~b(~, 2)}.  

A relation R is [I] if "--7 R is El and is A'~ if both R and "--7 R are E'~. 

Recall that for n _-> 1, °/4/'~" = {Y: Y is well-founded on A "}. 

By M~(~b0)-Comp we mean the class of all the sentences of L~ of the form 

't~ ~r~'[V.~(':lZl(~)(.,l~, Z,, 9)'(--')"t~Z2(~t(.,lC, Z2, V)) 

axw(  • x , - ,  az,4,(z, z,, ?))] 

where X does not occur in 4, and ~b, e E Ar(~b0). 

By Ell(~b0)-Comp we mean the class of all the sentences of L~  of the form 

v?3xve(e x ?)) 

where 4) e Zll(~bo) and X does not occur in ~b. 

It is clear what we mean by AI-Comp, XZrComp or 2£I($0, WF(X))-Comp.  
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LEMMA 2. Let 4'0 be a formula of L ~. For every "£.I(4,o) formula 4, of L ~ there 

exists an Ar(~b0) formula ¢b such that if M is second order structure over all which 

satisfies the following two conditions: 

(1) X, Y e  M t ~ X × Y e I M } ,  

(2) If X ~ 1M I and X is a 1 + m-ary set (1, m >= 1) then there exist sets 

Xt,  X: ~ I MI l-ary and m-ary respectively such that 

~ t ~ w .  (e. e x , . - . , ~ ( ( e , , ~ ) e x ) ) ,  

s~vy  (y e x ~ e ( ( e , y ) e  x)), 

then 

s ¢ ~  4J ~ :IX6. 

PROOF. Assume for simplicity that ¢, is of the form 3X13X2~,(.~, X,, X2, X)  

where ~,(~, X~,X2,)2) is a (k, 1, m, n , , . . . ,  n,) Ar(60)-formula of L~ for some 

k , l , m , n , . . . , n ,  where l ,m >1.  

Let 4J'(x,- X, X2, )2) be the following (k, 1 + m, nl, • • ., n, )-formula of L2~". 

4,, (~, ~((~,  ~) e x),  x2, )2) 

and let 4, (.~, X, .12 ) be the ( k , l +  m, n ,  . . ., n, )-formula of L~ obtained from 
~-(~, X, 3 f ( ( f ,  )7)6 Y), X)  by replacing all the occurrences of Y by X (we have 
to make this small detour via Y in order to avoid the clash of variables). Clearly 

4' E Ar(cko). 
Now it is easy to see that for all ~ and )2 

~Q~ ~ ~]X l ~]X2¢l(J~ , X,, X2, )2) ~ ~X~) (.1~, X, )2). 

Indeed, if for some X, and X: M ~ tpl(.~, X,, X:,)2) then X~ x X2 ~ I M I and 
clearly by Lemma 1 M ~ 6(£, X, )2). 

Conversely, if for some X M ~ ~(~, X, )2) then 

x ,  = {~: ~ ~ 3~((~, ~ ) e  x ) } ~  I~  l, 

x~ = {~: ~ ~ 3~((~, ~ )e  x ) } e  l~ l  

and clearly by Lemma ] 

,~ ~ ~JI(JC, Xl, X2, X). [] 

COROLLARY l. Let cko be a formula of L ~. Let M be a second order structure 

over °ll. I f  M ~ A](~b0)-Comp then M also satisfies the following scheme: 
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vf[w(4,(e, f),--, ~ e(e, f))--, 3xw(z  E x ,-, 4,(e, 9))] 

where X does not occur in 4' and 4', @ are E~(4'0) formulas. 

PROOF. By Lemma 2. [] 

Suppose now that 4,(x~, . . . ,x , ,  Y )  is a (n,n)-formula of L~. 4' defines an 

operator • (not necessarily monotone) on the n-ary relations 

a,(s) = {(x,, . . . ,  x.): ~(~z) ~ 4 '(x, ,- . . ,  x,, s)}. 

Define by induction 

/~= U I~. 

By the closure ordinal of 4,, 114, II, we mean the least ~ such that I ,  ~ = L,I,<,I~. 

I ,  is said to be inductively defined by 4,. Observe that 

I .  = I ~ " =  U t,~. 

By IX I we denote the cardinality of a set X. By r I + we mean the least cardinal 

number greater than rl. 

If 4,0 is a (n, n)-formula of L~ where 6// = (A, R~, . . - ,  R, )  then 114,0It < t a t  +. If 

~ A"  then 

least r I such that ~ E I ~  o if ~ E L o  

I~l*°= j+ 
I A otherwise. 

Observe that for every 71<[AI  + there exists X C A 2  

~(°//)1= WF(X)  and IlXlf= 7. 

such that 

§3. Nonmonotone inductive definitions and models of comprehension 

The first theorem we prove is the following: 

THEOREM 1. Let 4,0 be a (1,0-formula of L ~. Let ~ be a second order 

structure over ~ such that ,d ~ Al~(4,0)-Comp and 4,0 is sg-absolute. Then 

< h(~t) ~ I:oE I~1. 

PROOF. Define a (2, 2, 2)-formula (l)(x, y, X, Y) of L ~ as follows: 
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Let 

• (x,y,X, Y),--~:Iz (z eFld(X[~)  A (z ,y )E  Y). 

~b(x, y, X, Y) ~--~ ~(x, y, X, Y) v [~0r'(Y, ~(x, y ', X, Y)) A X E Fld(X)] 

(we avoid the clash of variables by appropriate renaming of the variables 

occurring in ~b0). 
Finally define 

Observe that 

and 

0 (X, Y) o Vx Vy ((x, y) E Y o ~b (x, y, X, Y)). 

~(x, y, X, Y) E A r  (~b0) 

O(X, Y ) ~  Ar(~b0) 

so both are ~-absolute formulas. 

We prove at first the following two facts: 

(I) If ~(° ) / )~WF(X)  then for all Y 

~(all)~ O(X, Y) ¢¢, Y = {(x, y): x E Fld(X), y E I~XtJ}. 

(II) If X ~E I~ l  and ~(°//)I=WF(X) then 

{(x, y): x E Fld (X), y E I~ xtJ} E[M I. 

Suppose that ~(o//)~ WF(X). Let 

Yo = {(x, y): x ~ FId(X), y ~ I~Xo'3}. 

PROOF OF (I). We prove that ~(0//)~ 0(X, Yo). 

Let x and y be arbitrary. If x ~ FId(X) then 

~ ( q / ) ~  (x, y) gig. Yo A --1 ~k(x, y,X, Yo). 

So assume that x E Fld(X). Then 

because 

~(~)~(x,y)~ Yo~ y ~ t ~  '*tr 

¢~yc U t,~ov~o(y, U t;o) 
n <llx,~ II n <llx l,  II 
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( z , x ) E X  ~ (Xr,, r:~ = xr~),¢:~ 3z(z E Fld(Xlx)^  y E I1~o '~") 

v 6,,(Y,{Y': ~(0//) ~ 3z(z E FId(X Ix) A y'  E Itk~ot'"}) 

by Lemma 1 

~(° / / )~  ~(x, y,X, Yo)v 4,oy,(y,~(x,y',X, Y,,)) 

¢, z?(°u) ~ 6(x,y,X, Yo). 

Thus ~(a / / )~  O(X, Yo). 
Suppose now that for some Y ~(o/ / )~  O(X, Y). Observe that then for all x 

and y 

( x , y ) C  Y--.-~x E FId(X). 

We prove by induction with respect to ]IX Ix ]l that for all x, y 

(x ,y )~  Y ~ ( x , y ) ~  Yo. 

Let x E FId(X). Suppose that the claim is true for all pairs (z, y) such that 

II x rz II < II x Ix II. Then for all y 

~(0u)~ (x, y) ~ Y ¢~ ~ ( ~ ) ~  ~,(x, y, x,  Y) 

by Lemma 1 

¢~ ~(~)~::lz(z ~ F l d ( X r ~ ) ^ ( z , y ) C  Y) 

v,;bo(y,{y': ) ( ~ ) ~ 3 z ( z  E F l d ( X I x ) ^ ( z , y ) ~  Y)}) 

by induction hypotheses 

¢:~ ~(°21)l= 3z(z ~ F l d ( X I , ) ^ ( z , y ) E  I",,) 

v qbo(y, {y ': ~ ( ~ )  M 3 z (z E Fld (X [. ) A (Z, y) E V,,)}) 

by Lemma 1 

¢~ ~(0~)~ ~(x, y,X, Y,,) 

by the above string of equivalences 

)(ou)~(x,  y ) ~  yo. 
Thus by induction Y = Yo which concludes the proof of (I). 

PROOF or (II). Assume additionally that X @ I s / I .  We prove the claim by 

induction with respect to II x [I. So suppose that the claim is true for Z E I ~  I such 

that IlZll<llXll. Let for x E FId(X) 
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r Jrx r~ ¢= Ir~ Y(x)={(z ,y):z  ~ Fld(Xrx) ,y  E -*o ,- 

For x E Fld (X) II X Ix I1 < )1X II and X r. E J d I so by induction hypothesis and 
(I) combined with d-absoluteness  of 0 

(3) Vx[x ~F ld (X)~(Y(x )E l sdJ  and d ~  O(XIx, Y(x)))]. 

We prove now that 

s d ~ V x V y [ B T 3 Y ( x  E FId(X) A X Ix = T A 0(T, Y) A 0(X, y, X, Y)) 

(4) 
*--',VTVY(x ft. Fld(X)  A ( ( x r ,  = T A 0(T, Y))--* 0(x, y,X, Y)))]. 

Take arbitrary x and y. Suppose that the left hand side of the equivalence 

holds. Then x E FId(X). By ..q-absoluteness of 0, (I) and (3) 

,l,(x, y, x ,  Y(x)). 

Take now arbitrary Y such that d ~ O(X[x, Y). Then ~ ( ~ ) ~  O(XF~, Y), so 

by (I) Y = Y(x). By the above ..q ~ ~b(x, y, X, Y). Thus 

sd ~ V Y(O(X Ix, Y)---~ O(x, y, X, Y)), i.e. the right hand side of the equivalence 

holds. 

Conversely, suppose that the right hand side holds. Then x E Fld(X).  By (3) 

Y(x)EIsd I and sg~O(X[,,Y(x)).  Thus sg~O(x,y,X,Y(x)) .  Hence 

, f f~3Y(O(Xr,,  Y) A ~b(x, y,X, Y)), i.e. the left hand side holds. 

So (4) is proved. ~ satisfies Al(q~0)-Comp, so by (4) and Corollary 1 

s g ~ V x  V y [ ( x , y ) E  Y~ ¢¢, ::tT:tY(x E FId(X) A 

XI~ = T A O(T, Y)A 0(X, y,X, Y))] 

for some Y1E l.-q I- 

Thus for all x and y 

J ~ ( x ,  y ) ~  Y] ¢:~ ~ / ~ x  @ FId(X)A q Y(0(XIx, Y)A ~b(x, y, X, Y)) 

by (I) and (3) 

d ~ x  E FId(X) A 0(X, y,X, Y(x)) 

since 0 is ..q-absolute 

¢* ~(°ll)~ x E Fld(X)A O(x, y,X, Y(x)) 

by the definition of ~b and Lemma 1 

T ftx r. t,  I1~ X EFld(X)&~(° l l )~qz(z  E F I d ( X I . ) A y  E , , , ,  j 

,, 4,o(y, {y': 3z  (z E F l d ( X  t .)  A XZ'*"")}) 
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by the definition of IIx II 

¢ : > x E F l d ( X ) & ) ( ° / / ) P Y  E U 1% 
,~<rIXrxll 

t l l×r=rr <=> x c F ] d ( X ) & y  E .,~,, . 

Thus Y1 = Yo. But Yl E [5~ / SO the proof of (II) is concluded. 

Let now ~ < h ( ` i ) .  Then for some X E I ` I  such that ~ ( ° / / ) ~ W F ( X )  

,1 -- t t x t t  By (II) 

Yo = {(x, y): x E Fld(X), y E/~xr.ll} ~ I ` i l .  

By comprehension there exists Z ~ I`i I such that 

` i  ~ Vy (y E Z ~ 3x ((x, y) E Yo) v ~b0y,(y ', :Ix ((x, y ') ~ Yo))). 

Observe that for all y 

` i  ~ y E Z ¢:~ ~(°?l)k= :Ix((x, y) @ Yo) v ~b,,,,(y, ::Ix ((x, y') @ Yo)) 

b y L e m m a  1 ¢ :>yE U / % v ~ ( ° l / ) h ~ 0 ( y ,  U 1%) 
,~ <ljXrl ,~<Nxrl 

l l lX l l  ¢:~ y EE -,b,, • 

Thus Z = 1% which concludes the proof. [] 

What are the conditions which, imposed on a structure `i, imply that 

]1 ~b01] < h (`i)  and I,~, E l ` i  I ? Clearly we have to assume that ` i  is a/3-structure - -  

there are w-models of full comprehension which do not contain I I l -  E[ sets (see 

e.g. Apt [1]), so in particular do not contain all sets inductively defined by 

arithmetical formulas. 

Is it sufficient to assume that ` i  is a/3-model of A',(~0)-Comp? The answer is 

no, because there exist acceptable structures on which every model of 21[-Comp 

is a /3-model. 

We conjecture that E](~bo)-Comprehension is not sufficient either. Clearly one 

has to add the condition that 4~0 is `i-absolute. 

We prove the following theorem: 

THEOREM 2. Let cbo be a (1, 1)-formula of L ~. Suppose that ` i  is a ~3-structure 

over °71 which is a model of El1(42o, WF(X))-Comp and that 4)o is `i-absolute. Then 

II,t,0II < h (`i) .  
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PROOF. L e t  

X(x, y)<=> B X 3 Y [ W F ( X ) ^  O(X, Y ) ^ 3 z ( ( z , x ) •  Y ^ ( z , y ) ~  Y)] 

where O(X, Y)  is the formula defined in the proof of Theorem 1. X(x, y) is a 

Et~(~bo, WF(X))-formula, so there exists Z • I MI such that for all x and y 

M ~ ( x , y ) •  z ¢ ,  x(x, y). 

Observe that for all x and y 

(x, y ) •  Z ¢:> M ~ W F ( X ) ^  O(X, Y ) A : q Z ( ( Z , X ) •  Y ^(z ,y)  ~ Y) 

for some X • ] M ] and Y E l M ]  

for some X • I M] and Y • I M] such that ~(0//) ~ WF(X) 

because M is a /3-structure and 0(X, Y) is M-absolute 

¢:> ~ (ag) i~ 0 (X, Y) ^ 3 z ((z, x) • Y ^ (z, y) ~ Y) 

for some X • I M] such that ~(0//)~ WF(X) 

by (I) and (II) 

::lz (z • FId(X) ^ x •/l~or'll ^ y ~ IJ~ r'll) 

¢:~ IX l ,o<h(M)  & lXl,o <fYt ,o  

because h (M) is limit 

¢¢, x • 11o ^ y fig_ I~o for some r /<  h (M). 

It follows that Z is transitive and well-founded, i.e. ~(a/ /)~ WF(Z).  

Suppose that h ( M ) -  < I]~bo[[. Then for every r /<  h(M) there exists x • Fld(Z) 

such that Ixl,~,=r/. Clearly IIZr~ll=r/. Thus h(M)-<[[Zf[, which is a 

contradiction. [] 

THEOREM 3. Let qbo be a (1, 1)-formula of L ~2, where ql = (A, R1, " ., R,) .  Let 

K(tbo) = {M: M is a [3-structure over °tl, 

M ~ E](,;bo, WF(X))-Comp and th,, is M-absolute}. 

Then 

O) 
(ii) 

I,~, e n x(4,o). 
I,~, E Def(K(~bo)). 

Moreover I~, is invariontly definable over ~[(q)o) by a Zll(q)o, WF(X))-[ormula. 
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(iii) There exists a S[(¢,,, WF(X))-formula ~b,,(x, y) such that 

(i') ~o(x, y) is d-absolute for d ~ 27/'(6,, ), 

(ii') II Zol] = I1 6oil where Zo = {(x, y): ~ (0-//) ~ ~b,,(x, y)}. 

PROOF OF (i). By Theorems 1 and 2. 

PROOF OF (ii). Observe that for all x 

(~/) ~ x E I~o'~ 3 X  3 Y[WF (X) ^ 0 (2(, Y) ^ 3 z ((z, x) E Y)]. 

Indeed, 

x ~ I~o ¢:> x ~ I~,, +~ for some r / <  IA I ÷ 

,llxr./i for some X such that WF(X)  and z ~ FId(X) ¢::> XE,~,  o 

¢:> 3X 3 Y[WF(X) ^ 0(X, Y) ^ 3z ((z, x) E Y)l. by (I) 

It remains to prove that the formula 

3 X  3 YIWF(X) A O(X, Y)  ^ 3z  ((z, x) e Y)] 

is d-absolute  for d E ~7{(¢o). 

Let d E $'{(~bo). By Theorem 2 there exists Z ~ l d l  such that ~(6//) ~ WF(Z)  

and IIZJ] = II Coil. 
We have for all x 

(~)  I= 3X B Y[WF (X) ^ 0 (X, Y) ^ 3 z ((z, x) ~ Y)I 

~ x ~ / ~  

x ~ IL for some 7/< [f z II 

x E I ~  r~jl for some z ~ FId(Z)  

by (I) ~ ~'(~)~3Y[O(Z, Y) A3Z((z,x)~ Y)] 

by (II) ~ d ~  3 Y[O(Z, Y)^ 3z((z,x)~ Y)] 

d ~ 3 X  3 Y[WF(X) ^ 0(X, Y) ^ 3z  ((z, x) E Y)]. 

Implication in the other direction follows from the fact that WF(X)  and 

8(X, Y) are d-absolute  formulas. 

PROOF OF (iii). Let 

Co(X, y) ~ ::IX ::1Y[WF(X) ^ 8(X, Y) ^ 3t((t, y) E Y 

^3z( (z ,x )e  v ^(z,y)e~ V)l 
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and let Zo = {(x,y): ~(0-//)~ ~b0(x, y)}. Then for all x and y 

~(OR)~ (x, y ) ~  Zo ¢:> y E I, , ,&lx !~,< lY I*,, 

as a string of equivalences analogous to that in the proof of Theorem 2 shows (in 

place of s~ we should take ~(OR)). 

The proof that O0(x,y) is M-absolute for s~ E o~{(4)0) is analogous to the 

appropriate proof from part (ii). [] 

Let WF"(X) be the following (0,2n)-formula of L~ where OR = 

(A, R 1 , . . . ,  R,): WF"(X),~--~X is a well-founded transitive relation on A". 

Clearly all the results of this section hold for (n, n)-formulas instead of 

(1, 1)-ones after replacing throughout the section each occurrence of the formula 

WF(X)  (including the definition of h (.if) - -  we denote this changed ordinal by 

h " ( ~ ) )  by WF"(X). 

From the proofs of Theorems 1 and 2 we can easily extract 

TrtEOREM 4. Suppose that for some n >= 1 the relation 34/'0%" is arithmetical on 

°71. Then 

{ I~,: 4)0 is a ( n, n )-arithmetical formula of L ~' } C (3 Mod (2~'rComp). 

PROOF. For some arithmetical formula 0 of L~ 

~(oR) ~ WF° (X),-, 4,(X). 

Suppose that 4)o is a (n, n)-arithmetical formula of L~. Then A~(4)o)-Comp = 

A'rComp. Let sg be a second order structure over °R which is a model of 

~;l-Comp. 

Let 1'(~, Y) be the following (2n)-formula of L~ 

x(~, Y)'-" 3 x  3 Y[C,(x) ^ o(x, ~/) ^ 3~((e, ~) ~ Y ^ (e, y) ~ Y)] 

where O(X, Y)  is the appropriate (0,2n, 2n)-formula defined in the proof of 

Theorem 1. 

2((-~,Y) is a El formula, so there exists Z ~ fsq such that 

s~ ~ v~ vy((~, Y) e z ~x(x ,  y)). 

The same string of equivalences like in the proof of Theorem 2 shows that for 

all # and y 

(~, 37) E Z ¢:5 ~ !~ < h"(s~) & ! £ I,~,< I y t,~ 

which analogously implies that 114)0ll< h ( d ) .  Due to Theorem 1 I ~ E  I d  . [] 



Vol. 29, 1978 INDUCTIVE DEFINITIONS 235 

COROLLARY 2. Barwise-Grilliot theorem (see Moschovakis [2] p. 140) is false 

if one omits the assumption of countability. 

PROOF. There are acceptable structures 0// on which all the relations WF" are 

arithmetical (see Moschovakis [2] theorem 6C.3). By Theorem 4 the intersection 

of all models of Z~-Comp contains all inductive relations on ~,  so by corollary 

5D.3 from Moschovakis [2] it is different from the family of all hyperarithmetical 

relations on q/. [] 

NOTE. The other way to prove the above corollary is to use theorem 7A.1 

from Moschovakis [2] in connection with theorem 7F.1. The advantage of the 

proof presented above is that it is much more elementary - -  it doesn't even use 

any of two Stage Comparison Theorems. 

§4. Invariant definability over models of A~l-Comprehension 

Throughout this section we shall use freely several results from Moschovakis 

[2]. Instead of writing e.g. "by theorem 7A.2 from Moschovakis [2]" we shall 

simply write "by theorem 7A.2". 

All the previously unexplained notations can be found in Moschovakis [2]. 

THEOREM 5. Let ~ be an acceptable structure. Let T be an inductive theory in 

L ~ which has a second order model over ~.  Then 2 

Def(Mod(T)) Cal. 

Here, of course, All denotes the .family of all At~ first order relations on ~.  

PROOF. Let X C Def(Mod(T)).  For some formula & of L~ which is ~ -  

absolute for ~ ~ Mad(T)  

Thus for all ~f = (x~,. • .,x~) 

e x ¢~ ~ ( ~ ) ~  ~(~) 

¢~ for every ~¢ E Mod(T)  ~ l = 4~(x) 

<:~ VZIModr(Z)---> Sat2(r4~ 1, Z, ~b, (x, , ." ", x,))] 

(we are using here the notation of lemma 7E.2 and theorem 8C.2). Mode(Z)  is a 

Z~t relation (see theorem 8C.2) and Sat2(a, Z, Y, b) is a A] relation (see lemma 

7E.2 and theorem 6B.5). Thus X is a Ill relation. Also - -aXE Def(Mod(T)) ,  so 

X is a HI relation relation, as well. Thus X is AI. [] 
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THEOREM 6. Let °ll be an acceptable structure. Let T be a theory in L ~ such 

that AI-Comp C T and T has a second order model over °-It. Then 

W~(~ ) C Def (MoO (T)). 

PROOF. Suppose that Xo ~ W~(o-//). By theorem 7D.1 there exists a formula 

th($,X) of L ~ such that for all 

~c ~ Xo ~ :~x6(x, x )  ~ ~ x ( x  ~ ~ ( o u ) &  4~(~,, x)).  

Let M ~ Mod(T). Then ~ ( ° / / ) C I M  f by theorem 7E.1. 

We have for all 

~(07/)~ 3X&(~,X) ~ ~(0//)~ 4~(~,X) for some X E W~(a//) 

~ ( ~ ) ~  4~(~, X) for some X E IMf 

M ~ 3x4,(~, x) .  

Thus 3Xth(.~, X) is M-absolute which shows that XoE Def(Mod(T)). [] 

Combining these two theorems we get 

COROLLARY 3. Let all be a countable acceptable structure. Let T be an 

inductive theory in L ~ such that A~-Comp C T and T has a second order model 

over °71. Then 

~ (a//) = Def(Mod(T)). 

PROOF. By theorem 8A.1 ~ ( ~ )  = AI, so the claim follows from Theorems 5 

and 6. 

The above statement is not true for uncountable acceptable structures. It 

follows from the following theorem. 

THEOREM "7. Let ~ be an acceptable structure. Suppose that for some n ~ ] 

°14/'~" is arithmetical on ell. Then 

{ I ~,,: ~o is a (n, n) X-positive formula of  L *} C Def (Mod (A~L-Comp)). 

PROOF. Let ~bo be a (n, n) X-positive formula of L * and let M be a model of 

~-Comp. 

By theorem 7A.1 there exists a formula ~(.~, Y) of L ~ such that for all 

U I,~, ¢:> 3 Y[°/4/'~" (Y)& ~b(2, Y)] 

¢:~ 3 Y [ Y  u )~(~//)  & ~//'~" (Y) & qb(2T, Y)]. 

For some formula ~ of L ~ 
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for all X C A  ~". Then 

~¢~-(x) ~ ~(~)~ ~(x) 

~(qz) ~ v~ (z ~ I~,-,  3 Y[~,(Y) A 6 (~, Y)]). 

We have for all .f 

~ (~ )~=  : : ly[qj (y)  A ~b(.~, Y)] ~ ~(a//)l= ~b(Y) A d'(x, Y) 

for some Y @ W~(a//) 

by theorem 7F.1 ~ ~(0/ / )~  t~(Y) A 4~(X, Y) 

for some V EI~/ I  

d ~ 3 v i e ( Y )  ^ 6(~, v)] 

which shows that : : ly[ t~(y)  A 0(Y,.~)] is d-absolute .  Thus I,~,E 

Def (Mod (A~-Comp)). [] 

We are unable to characterize the sets which belong to Def(Mod(/V,-Comp)) 

in the case of arbitrary acceptable structures. Observe, however, that the 

following theorem holds. 

THEOREM 8. Let  all = (A ,  R , ,  • • . ,  R~) be an acceptable structure. There exists 

an inductive set I such that  

Def (Mod (A',-Comp)) C ~ (a//, I). 

PROOF. Let I be an inductive binary relation which parametizes the unary 

inductive relations (see theorem 5D.2). Let X @ Def(Mod(A~2-Comp)). Then for 

all x, , . . . ,x ,  

~ (a//) ~ (x , , . . . ,  x,) E X ¢¢, (A, ~ (o//), R , , . . . ,  R~)~ ~b(x,, . . . ,  x,). 

Let k be the highest arity of second order variables occurring in ~b. Then clearly 

for all x , , . . - ,  x, 

~(~)~(x, , . . . ,x,)EXC:C,<A, U N~'m(~),R,, "'',R-)~o(x,,''',x,). 
m~=k 

By theorem 5D.4 for every l there exists a (l + 1)-ary inductive set I ~ which 

parametrizes ~ ( a / / ) .  

Let J = {(_m, a): a E I ' ,  m _-< k} (here _m is the rn-th integer in the copy of to in 

a coding scheme fixed throughout the proof). Clearly J is inductive. 

By lemma 7E.2 for all x , , . . . , x ,  
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~(~)~(x~ , . . . , x , )EX ¢~ Satz(~b~, J, ~b, (x,, . .  .,x,)) 

where Sat2 is a second order hyperelementary relation. 

This easily implies that X is hyperelementary on (9/,J). For some a 

J={x:(a ,x)EI}  thus X ~  ~ ( 0 / / ,  i).  

It seems likely that the inclusion in the above theorem could be replaced by' 

equality. We are, however, unable to prove it. 

REFERENCES 

1. K. R. Apt, ~o-models in analytical hierarchy, Bull. Acad. Polon. Sci. 20 (1972), 901-904. 
2. Y. N. Moschovakis, Elementary Induction on Abstract Structures, North-Holland, Amster- 

dam, 1974. 
3. Y. N. Moschovakis, On monotone inductive definability, Fund. Math. 82 (1974), 39-83. 

MATHEMATICAL CENTRE 
2E BOERHAAVESTRAAT 49 

AMSTERDAM 1005, THE NETHERLANDS 


