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ABSTRACT

The connections between inductive definability and models of comprehension
are studied. Let % = (A, R,,- -, R,.) be an infinite structure and let I, be a set
inductively defined by a formula ¢ of the second order language LY. We prove
that if &/ is a model of Aj-Comprehension relativized to ¢, and ¢ is o -absolute,
then for every n smaller than the height of o (h(A)), I] isin o If o is a
B-structure which satisfies 2-Comprehension relativized to ¢ and WF(X), and
¢ is sf-absolute, then I, is in & and ||¢|< h(). These results imply that
Barwise-Grilliot theorem is false in the case of uncountable acceptable
structures. We also study the notion of invariant definability over models,of
Aj-Comprehension.

§1. Introduction

This paper is devoted to the study of connections between inductive definabil-
ity and models of comprehension. The basic question to which we want to find an
answer is the following.

Let % be an infinite structure. Suppose that I, is a set inductively defined by a
second order formula ¢. Which properties of a second order structure of over U
imply that I, or some of its stages I3 belong to | |?

We prove in §3 that if o satisfies Aj-Comprehension scheme relativized to ¢
and ¢ is of-absolute then for every n smaller than the height of o (h(s))
I;e|d]|.

If we assume that & is a B-structure for which ¢ is &f-absolute and « satisfies
%|-Comprehension relativized to ¢ and WF(X) then||¢ || < h(«)and I, € | A |.

Using these results we prove that Barwise-Grilliot theorem (see Moschovakis
[2] p. 140) is false in the case of uncountable acceptable structures.
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The basic problem to which we are unable to find the answer is the following:
is it true that hyperelementary relations on an arbitrary infinite structure % form
a model (the smallest one) of A}-Comprehension?

In §4 we study the notion of invariant definability over models of Af-
Comprehension. We prove that if % is a countable acceptable structure and T is
an inductive theory in LY which extends A}-Comprehension and has a model
over U then the hyperelementary relations of 9 are exactly the sets invariantly
ddefinable over models of T. This theorem is not true in the case of uncountable
acceptable structures.

Finally we prove that if % is acceptable then for some inductive set I every set
invariantly definable over models of A;-Comprehension is hyperelementary in L

Unfortunately we are unable to give the exact characterization of sets which
are invariantly definable over all models of Aj-Comprehension in the case of an
arbitrary infinite structure 2.

We thank Mr. E. Alward and Prof. G. Kreisel for helpful remarks about
A}-Comprehension.

§2. Preliminaries

Throughout the paper the letters 75, £, 7, o always denote ordinals. If A isa set
we use small latin letters to denote the elements of A and capital letters to
denote relations on A of any (finite) number of arguments. By A" (n =2 1) we
denote the set of all n-tuples of elements of A. If X is a set 2(X) denotes its
power set. X denotes a sequence x,, -+, x, of elements of A and X denotes a
sequence X, -+, X, of relations on A.

For the convenience of the reader we recall here some definitions and
notations which can be found in Moschovakis [2] and Moschovakis [3].

The first order language over a set A, L has an infinite list of individual
variables x,y,z,---, a constant b for each element b of A, an infinite list
X,Y,Z, - of n-ary relation variables for each n 2 1 and a constant P for each
relation P on A. In forming formulas of L* the quantifiers 3 and V are applied
only to individual variables.

The second order language over A, L% is obtained by allowing quantification
of the relation variables in the language L *. For convenience we assume that the
formulas of the type X = Y are not well formed formulas (we may write instead
Vi(X(x)e Y{x)).

Let % = (A, Ry, -, R,) be a structure (that is to say R,, - -, R, are relations
over A). The first (second) order language L*(L%) for % consists of those
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formulas of the language L*(L%) whose relation constants are among
=,R,, ', R, We sometimes write X € X instead of X(X).

Formulas of L™ are called arithmetical formulas. All structures considered are
infinite.

o is called a second order structure over U =(A,R,,---,R,) if A =
(A,|A|,Ry, -+, R,) where ||{CU,. P(A"). While interpreting a formula
¢ of LY on o we assume that the second order quantifiers of ¢ range
over |#|. For simplicity (%) denotes the second order structure
(A,U,zi 2(A"), Ry, -+ -, R,).

We sometimes write ¢ (%, X) instead of P (U )k ¢(x, X).

DerintrioNn 1. Let o be a second order structure over %. A formula
&(xy, %, Xy, X,) of LY with free variables indicated is called
A -absolute if

A }=¢[X1,"',xk,X1,"’,X,.] & @(%)F (b[x;," ',x,.,X;," ',X,.,]
for all x,,---,x, €A and X, -, X, €| L.

WF(X) is the following formula of L3 where % =(A,R,, -, R.):
WF(X) <> X is a well-founded transitive relation on A, i.e.

WF(X)oeVx,y, z[(x, y)EX A (y,2)EX)—(x,2)E X]
AVS[Ax(x €8)>3y(y ESAVX(x ES > (x,y) £ X))]

DeriniTiON 2. A second order structure &£ over % is called a B-structure if
the formula WF(X) is o -absolute.

If ¢(xy," "+, X X1, - -+, X, ) is a formula of L ¥ with free variables indicated we
say that ¢ is a (k, r;, - - -, r,)-formula to indicate the fact that ¢ has exactly k free
individual variables and for every i = n free variable X; ranges over r;-ary
relations.

DeriNiTioN 3. Let ¢(%,X,X) be a (m,r, -, r)formula of LY and
¥(5, 7, Y) be a (I +p,p, -, p,)-formula of L¥. Suppose that ¢(%, X, X) and
¥(¥,¥:, Y) have no variables in common. Then ¢; (%, ¢(7, 7, Y), X) is a
(m+p,r,- - rypy, -, p)formula of L3 obtained from ¢(%, X, )2) by replac-
ing all the atomic formulas of the form Z € X occurring in ¢ (X, X,X) by
Y25, Y).

LEMMA 1. Suppose that ¢ (%, X, X) and ¢(3, ¥, Y) are formulas of LY .which
satisfy the above conditions. Then for all %, y,, X and Y
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P(UYE &5 (%, (3, 51, Y), X) & P(U)E ¢(%, A, X)
where )
A={7: 27y, Y}

ProoF. By induction on the length of the formula ¢(%, X, X). 0
DEerINITION 4. Suppose that X CA? is a binary relation on A. Let
FId(X)={x:3y((x,y)E X v (y,x)E X)}.
If z € FId(X) then
XL ={xy)(xy)EXA(y,z)€ X}.

By transfinite induction we define the classes of weli-founded transitive
relations on A

WF(g)={X: X is a well-founded transitive relation on A and
Vz(z EFld(X)— X |, € WF(7) for some 1 < o)}
It is easy to see then that
WF(X) & X € WF(o) for some o.

Suppose that WF(X). By || X || we denote the least o such that X € WF (o). If
x EFId(X) then | X | | <|| X ||. If (x,y) € X then X, = X, |.. If 0 <|| X then
for some x EFld(X) o = X1,].

If X and Y are two binary relations on A then by X =Y we mean the
following formula of L%:

3Z(Z is a 1-1 function from FId(X) into Fld(Y)

and Yx,y ((x,y)EX—=>(Z(x),Z(y))E Y)).
We define then

X<Yo3Iz zeFI(Y)AX=Y],).
It is easy to see then that if WF(Y') then
X=Y > |X|=|Y],
X<Y = |IXl<|Yl
DEerFINITION 5. Let o be a second order structure over 4. We define
h(A)=sup(|X||+1: P(U)WF(X) and X €|«)).
We call h(s«) the height of o.
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DEerINITION 6. Let % be a class of structures over % = (A, Ry, - -, R,). Then
NK ={X:X €| |forall € ¥},

Def(¥)={X:X € U,=, P(A") and for some formula ¢() of LY
with free variables indicated which is &f-absolute
foral S €H
PUYEVI(X € X < ¢(X))}.

Thus N ¥ is the intersection of all the structures belonging to X whereas
Def(3) is the coliection of all sets invariantly definable over .
If T is a set of sentences of L5 (i.e. a theory in L%) then

Mod(T) = {«: A is a second order structure over % and of &= T}.

DerFNITION 7. Let ¢, be a formula of L. Ar(¢,) is the smallest class of
formulas of LY such that

(i) o€ Ar(dv),

(i) every arithmetical formula of LY is in Ar(dy),

(iii) if ¢, ¥ € Ar(do) then 1, ¢ v ¢, Ixd € Ar(do).

A formula ¢ of LY is a 2i(¢,) formula if it is of the form 3X,---3X,¢ for
some formula ¢ € Ar(¢).

We call a relation R(%,X) (RCA"XP(A™)X --x P(A™) for some
n,n, -, n) arithmetical (2}) if for some arithmetical (2}) formula ¢ of L%

R ={(% X): 2(U)F ¢ (%, X)}.
A relation R is II} if = R is 3] and is A] if both R and — R are 3.
Recall that for n =1, WF" ={Y:Y is well-founded on A"}.
By Ai(¢o)-Comp we mean the class of all the sentences of LY of the form
VY[VEQRZ,6(X, Zy, Y)VZp(X, Z2, Y))
—3XVi( € X <3Z¢(Z Z,, Y))

where X does not occur in ¢ and ¢, ¥ € Ar(do).
By 2i(¢o)-Comp we mean the class of all the sentences of LY of the form

VYIXVi(ZEX o (3 T)

where ¢ € 2i(¢o) and X does not occur in ¢.
It is clear what we mean by A{-Comp, X;{-Comp or Xi(¢o, WF(X))-Comp.
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LeEmMMa 2. Let ¢y be a formula of LS. For every 3.\(¢o) formula s of L% there
exists an Ar (o) formula ¢ such that if o is second order structure over U which
satisfies the following two conditions:

(1) X YE|LIDXXYE|A|

) If Xei{d| and X is a l + m-ary set (,m = 1) then there exist sets
X, X, E|d| l-ary and m-ary respectively such that

AEVZI(ZEX <35I, 7)€ X)),
AEVY (§ E X, 32((Z,7) € X)),
then
AE ¢ <3IX.

ProOF. Assume for simplicity that ¢ is of the form 3X, 33Xy (%, X,, X», X)
where (X, X,,Xz,X') is a (k,,m,n,, -, n,) Ar(do)-formula of LY for some
k,Lm,n, -+, n, where Im =1.

Let ¢'(%, X, X,, X) be the following (k, !+ m, n,, - -, n,)-formula of L¥:

1: (%, 37 (2, §) € X), X2, X)

and let (X, X, X) be the (k,![+ m,n,, -+, n,)-formula of L% obtained from
¥y (%,X,32((2, 7) € Y), X) by replacing all the occurrences of Y by X (we have
to make this small detour via Y in order to avoid the clash of variables). Clearly

& € Ar(do).

Now it is easy to see that for all ¥ and X
o =X, 3X04(%, X, X, X) < AXP (%, X, X).

Indeed, if for some X, and X, o & ¢(%, X\, X5, X) then X, x X, € |sf| and
clearly by Lemma 1 o k= ¢ (%, X, X).
Conversely, if for some X o k= ¢(%, X, X) then

Xi={z: 43§z, 7)EX)E|L],
X:={y: A 32((Z,y)E X)) E|A|
and clearly by Lemma 1
A E (%, X1, Xo, X). O

CoROLLARY 1. Let ¢ be a formula of L. Let s be a second order structure
over U. If A E Ai(do)-Comp then o also satisfies the following scheme:
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VY[VZ(¢(z, V) y¢(Z V)= IAXVI(ZEX o ¢(2, V)]
where X does not occur in ¢ and @, ¢ are i(do) formulas.

Proor. By Lemma 2. O
Suppose now that ¢(x;," -, X, Y) is a (n,n)-formula of LY. ¢ defines an
operator ® (not necessarily monotone) on the n-ary relations

D(S)={(x1, ", %) P(U)E b(xy,- -, %, S}

Define by induction

By the closure ordinal of ¢, || ¢ ||, we mean the least £ such that I§ = U, _.I3.
I, is said to be inductively defined by ¢. Observe that

L=I¥= U I3

7 <lle]

By | X | we denote the cardinality of a set X. By n* we mean the least cardinal
number greater than 7.

If ¢ois a (n, n)-formula of LY where U = (A, R,,- -+, R,) then ||¢o]| < |A |". If
X € A" then

least n such that x € I, if x € I,
| % |o =

[A] otherwise.
Observe that for every 7m <|A|[" there exists X CA® such that
PU)E=WF(X) and | X[ = .
§3. Nonmonotone inductive definitions and models of comprehension
The first theorem we prove is the following:

THEOREM 1. Let ¢ be a (1,1)-formula of LY. Let s be a second order
structure over U such that A F Ai(d,)-Comp and ¢, is A -absolute. Then

n <h(d) > I, €[A|.

Proor. Define a (2,2,2)-formula ®(x,y, X, Y) of L7 as follows:
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P(x,y,X,Y)e>3z (z EFlA(X ) A (z,y)EY).
Let
Uy, X, Y)o 0y, X, Y)V[do(y, Py, X, Y)) rx €FId(X)]

(we avoid the clash of variables by appropriate renaming of the variables
occurring in ¢o).
Finally define

9(X, Y)oVx Vy((x,y)E Y o ¢(x,y, X, Y)).
Observe that
¥(x,y, X, Y)E Ar(¢o)
and
(X, Y)E Ar(¢v)

so both are of-absolute formulas.
We prove at first the following two facts:
0 If 2(U)FWF(X) then for all Y

PAUEOX,Y)S Y ={(x,y):x EFId(X),y € IS},
(I) 1f X €| | and P(U)F WF(X) then
{(x,y):x EFId(X),y €IS} €| oA|.
Suppose that ?(U)F WF(X). Let
Yo={(x,y): x €FId(X),y € I'}-"}.

Proor oF (I). We prove that 2(U)kE= 0(X, Y,).
Let x and y be arbitrary. If x £ FId(X) then

PUYE(x,y) € Yor14(x, y, X, Yo).

So assume that x € FId(X). Then

PUYE(x,y)E Y, y € I'X

wye U revee(y U 13)
7 <IXTIxll

n<IXixl

because
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(z,x)EX > (X 1.=XI.)© Az(z €FA(X )y € I'X
v ouy, {y: P(U)FIz(z EFIA(X 1) Ay’ € TN
by Lemma 1
& P(UVFD(x, Y, X, Yo) v do, (3, P(x, y', X, Yo))
© PUFY(x,y, X, Yo).

Thus P(U)FE 6(X, Y,).
Suppose now that for some Y P(U)kE (X, Y). Observe that then for all x
and y

(x,y)E€ Y —x € Fld(X).
We prove by induction with respect to | X |, || that for all x, y
xy)EYeo(xy)EY,.

Let x € FId(X). Suppose that the claim is true for all pairs (z,y) such that
| XT. I <{X1I.|. Then for all y

PAE(ry)EY & PU)=Y(x,y, X, Y)

by Lemma 1
& PU)EIz(z €EFIA(XT)A(z,y)EY)

vy, {y: P(UEIz(z EFIA(X ) A (2,y) EY)D
by induction hypotheses
& P(UY=Az(z €FIA(X 1) A (2, y)E Yy)
v @a(y, {y" - P(U)FIz(z EFIA(X ) A (2, y) € Yo)b)
by Lemma 1
S PUYEY(x,y, X, Yo)
by the above string of equivalences

© P(UYE(x,y)E Yo
Thus by induction Y =Y, which concludes the proof of (I).

ProoF oF (II). Assume additionally that X € | «/|. We prove the claim by
induction with respect to || X ||. So suppose that the claim is true for Z €| | such
that | Z || <||X|. Let for x € FId(X)
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Y(x)={(z,y): z €EFld(X,),y € ™"},
For x €FId(X) | X ].||<]|X | and X |, € || so by induction hypothesis and
(1) combined with sf-absoluteness of 6
3) Vx[x EFId(X)—>(Y(x)E || and o F 6(X ], Y(x )]
We prove now that

AERVxVy[3TIY(x €FId(X)A XL =T A6(T, Y) A ¥(x,y, X, Y))

@) SVTVY(x EFId(X)A (X, =T A8(T,Y)—> ¢(x,y, X, Y)))]

Take arbitrary x and y. Suppose that the left hand side of the equivalence
holds. Then x € Fld(X). By «-absoluteness of 6, (I) and (3)

AEY(x,y, X, Y(x)).

Take now arbitrary Y such that of = 8(X [, Y). Then (%) 0(X1,, Y), so
by () Y=Y(x). By the above AEY(x,y,X Y)  Thus
AEVY(B(X1, Y)—=¢¥(x,y, X, Y)), i.e. the right hand side of the equivalence
holds.

Conversely, suppose that the right hand side holds. Then x € Fld(X). By (3)
Y(x)E|of| and AEOH(X],Y(x)). Thus oA E¢(x,y,X, Y(x)). Hence
AEIAY(O(XI, Y)Ag(x, v, X, Y)), ie. the left hand side holds.

So (4) is proved. & satisfies A{(¢o)-Comp, so by (4) and Corollary 1

AEYxVYy[(x,y)EY, © 3ATIY(x € Fld(X) a
XL=Tn0(T,Y)nu(xy,X V)]
for some Y, €| |.
Thus for all x and y

dEMxy)eEY © dx e FIdX)AIY(O(XI, Y)rd(x,y, X, Y))

by (I) and (3)
S AExeFIdX)rd(x,y, X, Y(x))

since i is sf-absolute
S P2(U)Ex eFIdX)Ad(x,y, X, Y(X))
by the definition of ¢ and Lemma 1
&S x€Fd(X)& P(U)=Az(z €FIA(X ) Ay € [IX!!
v bo(y, {y" P(U)FIz(z EFIA(X ) ny € TSN
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by the definition of | X |,

& xeFdX)&P(AUFye U I3

<X Tl

v oy ()” @) 3»‘))

R <Xy
& x €EFd(X)&y € Il

Thus Y, = Y,. But Y, €|/ so the proof of (II) is concluded.
Let now 1 <h(#). Then for some X €|« such that P(U)E=WF(X)

n =[IX|{. By ()
Yo={(x,y):x EFId(X),y e I'\"} e l].
By comprehension there exists Z € || such that
AEVY(y €EZ o Tx((x,y)E Yo) v o, (¥, Ax((x, y') E Yo))).
Observe that for all y

AEYyEZ S P(U)EIx((x,y)E Yo) v oy, Ix((x,y") € Yo))

by Lemma 1 eoye U IL,veP@kE oy, U IL)
3

£<IX]l <X
i1
< y € I¢() .

Thus Z = I}, which concludes the proof. O

What are the conditions which, imposed on a structure &, imply that
|| doll < h () and I, €| | ? Clearly we have to assume that & is a B-structure —
there are w-models of full comprehension which do not contain I1} — % sets (see
e.g. Apt [1]), so in particular do not contain all sets inductively defined by
arithmetical formulas.

Is it sufficient to assume that # is a B-model of Ai(¢o)-Comp? The answer is
no, because there exist acceptable structures on which every model of Aj-Comp
is a B-model.

We conjecture that 3(¢,)-Comprehension is not sufficient either. Clearly one
has to add the condition that ¢, is «/-absolute.

We prove the following theorem:

THEOREM 2. Let ¢ be a (1,1)-formula of L. Suppose that o is a B-structure
over U which is a model of 3i(¢o, WF(X))-Comp and that ¢, is o -absolute. Then

I oll < (£).
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Proor. Let
x(%,y)© AXIY[WEFX)IA0(X, Y)ATz((2,x)EY A(2,y) 2 Y)]

where (X, Y) is the formula defined in the proof of Theorem 1. y(x,y) is a
3.1(¢o, WF(X))-formula, so there exists Z €|sf| such that for all x and y

AL y)EZ & x(x,y).
Observe that for all x and y
5Y)EZS AEWFX)n0(X, Y)A3z((z,x)EY A(2,¥) € Y)
for some X €| | and Y €| HA|
forsome X € || and Y €|« | such that P(U )< WF(X)
because & is a B-structure and 6(X, Y) is & -absolute
& PUO(X,YIATz((2,x)EY A (2,y)EY)
for some X € || such that P(U )< WF(X)
by (I) and (II)
& Az (z EFIA(X)Ax € T3 Ay & I'X1:N
& X o <h(H) & |x |0 <]y ]t0
because h () is limit
S x €I ny &I} for some n <h(A).

It follows that Z is transitive and well-founded, i.e. 2(U)F= WF(Z).
Suppose that h ()= | ¢|. Then for every n < h(sf) there exists x € Fld(Z)

such that |x|s,=m7. Clearly |Z].[|=%. Thus h(#)=|Z]|, which is a

contradiction. O

THEOREM 3. Let ¢, be a (1, 1)-formula of L%, where U = (A, R, -, R.). Let
H(Po)={A: of is a B-structure over U,
A E 2i(do, WF(X))-Comp and ¢, is s{-absolute}.

Then
(@) In€ N K (o).
(i) Iy € Def (¥ (o).
Moreover I, is invariantly definable over ¥ (o) by a Zi(do, WF (X))-formula.
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(iii) There exists a Zi\(do, WF(X))-formula §o(x,y) such that
i) ¢o(x,y) is A-absolute for A4 € H (),
(i) [|Zo]) = ¢oll where Zy={(x,y): P(U)F du(x, y)}.

ProoF oF (i). By Theorems 1 and 2.
Proor oF (ii). Observe that for all x
PAUVEx € L,oIXIAY[WEFX)A0(X, Y)A3z((z,x)E Y)]
Indeed,
xEl,© x €I} for some n <[A]|
& x € I'Y! for some X such that WF(X) and z € Fld(X)
by (I) S AXIAY[WEX) A 0(X, Y)AAz((z,x)E Y)].
It remains to prove that the formula
IXIY[WF(X)A0(X,Y)A3z((z,x)E Y)]

is &f-absolute for o € ¥ (o).

Let o € ¥ (¢o). By Theorem 2 there exists Z €| | such that (U )= WF(Z)
and |Z = | ol

We have for all x

P@U)FIAXIY[WF(X) A 0(X, Y)a3z((z,x)E Y)]
> x€l,
= x €17, for some 7 <||Z|
= x € I'Z"! for some z € Fld(Z)
by (1) > PAU)FIY[O(Z, Y)a3z((z,x)E V)]
by (II) > A EAY[O(Z Y) A3z (2, x)E Y)]
> A FAXIY[WEX) A 0(X, Y)A3z((z,x) € Y)].

Implication in the other direction follows from the fact that WF(X) and
0(X, Y) are of-absolute formulas.

Proor oF (iii). Let
Yo(x,y) e AX AY[WF(X)A (X, Y)AIt((t,y)EY
AIz((z,x)EY A(z,y)E Y)]
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and let Z,={(x,y): P(U)F ¢o(x, y)}. Then for all x and y
PAUVE(y)EZi @y € L, & x 6 <]Y |a

as a string of equivalences analogous to that in the proof of Theorem 2 shows (in
place of o we should take 2 (%)).
The proof that ¢,(x,y) is sf-absolute for &f € X (¢,) is analogous to the

appropriate proof from part (ii). [l
Let WF"(X) be the following (0,2n)-formula of L% where U =
(AR, +,R,): WF'(X)e X is a well-founded transitive relation on A"

Clearly all the results of this section hold for (n, n)-formulas instead of
(1, 1)-ones after replacing throughout the section each occurrence of the formula
WF (X) (including the definition of h (&) — we denote this changed ordinal by
h"(A)) by WF(X).

From the proofs of Theorems 1 and 2 we can easily extract

THEOREM 4. Suppose that for some n Z 1 the relation W%" is arithmetical on
U. Then

{I,: o is a (n, n)-arithmetical formula of L%} C N Mod (2i-Comp).
Proor. For some arithmetical formula  of L¥
P(U)YE WF™ (X) <y (X).
Suppose that ¢, is a (n, n)-arithmetical formula of LY. Then A}(¢,)-Comp =
Ai-Comp. Let o be a second order structure over % which is a model of

31-Comp.
Let x(%,y) be the following (2n)-formula of LY

x(* y)eIXAY[WX)A0(X, YINIZ(Z,X)E Y A (Z,7) € V)]

where (X, Y) is the appropriate (0,2n,2n)-formula defined in the proof of
Theorem 1.

x (%, ¥) is a X1 formula, so there exists Z € |/ such that
AEVIVY((X,7)EZ < x(X,7)).

The same string of equivalences like in the proof of Theorem 2 shows that for
all ¥ and y

(ZYVEZ S Xu<h"(A)&IZ|6<|V a0

which analogously implies that ||¢,[| < h (). Due to Theorem 1 I, € |sf . [J
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CORrROLLARY 2. Barwise-Grilliot theorem (see Moschovakis (2] p. 140) is false
if one omits the assumption of countability.

Proor. There are acceptable structures % on which all the relations WF" are
arithmetical (see Moschovakis {2] theorem 6C.3). By Theorem 4 the intersection
of all models of Xi-Comp contains all inductive relations on 4, so by corollary
5D.3 from Moschovakis [2] it is different from the family of all hyperarithmetical
relations on 4. 0

Note. The other way to prove the above corollary is to use theorem 7A.1
from Moschovakis [2] in connection with theorem 7F.1. The advantage of the
proof presented above is that it is much more elementary — it doesn’t even use
any of two Stage Comparison Theorems.

§4. Invariant definability over models of Ai-Comprehension

Throughout this section we shall use freely several results from Moschovakis
[2]. Instead of writing e.g. “by theorem 7A.2 from Moschovakis [2]” we shall
simply write ‘‘by theorem 7A.2".

All the previously unexplained notations can be found in Moschovakis [2].

THEOREM 5. Let U be an acceptable structure. Let T be an inductive theory in
L7 which has a second order model over U. Then

Def(Mod(T)) CA;.
Here, of course, Ai denotes the family of all A; first order relations on U.

Proor. Let X € Def(Mod(T)). For some formula ¢ of L7 which is «-
absolute for o € Mod(T)

P(UYEVE(E E X o ¢(%)).
Thus for all £ = (x,, -, x.)
FTEX O PAU d(X)
& for every o € Mod(T) o k= ¢ (%)
& VZ[Mod™(Z)— Sat(d', Z, &, (x1, - - -, x.))]

(we are using here the notation of lemma 7E.2 and theorem 8C.2). Mod™(Z)is a
31 relation (see theorem 8C.2) and Saty(a, Z, Y, b) is a Aj relation (see lemma
7E.2 and theorem 6B.5). Thus X is a [1; relation. Also X € Def(Mod(T)), so
— X is a II; relation relation, as well. Thus X is Al. 0
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THEOREM 6. Let U be an acceptable structure. Let T be a theory in LY such
that A-Comp CT and T has a second order model over U. Then
HE(U)CDef(Mod(T)).

Proor. Suppose that X, € #€ (). By theorem 7D.1 there exists a formula
¢ (%, X) of L™ such that for all x

FEX, o XX X) & AX(X € HE(U) & d(F, X)).

Let & € Mod(T). Then ¥%€(%)C|s | by theorem 7E.1.
We have for all

PAUYEIXS(E X) D> P(U)E ¢(F X) for some X € HE(U)
> P(U)E (%, X) for some X €| A |
> o FIAX(E, X).

Thus AX¢ (X, X) is o -absolute which shows that X, € Def(Mod(T)). O
Combining these two theorems we get

CororLarYy 3. Let U be a countable acceptable structure. Let T be an
inductive theory in LY such that A\-Comp C T and T has a second order model
over U. Then

HE(U) = Def(Mod(T)).

Proor. By theorem 8A.1 #E&(U) = A1, so the claim follows from Theorems 5
and 6.

The above statement is not true for uncountable acceptable structures. It
follows from the following theorem.

THEOREM 7. Let U be an acceptable structure. Suppose that for some n = 1
WF" is arithmetical on U. Then

{Is,: o is a (n, n) X-positive formula of L™} CDef(Mod (A{-Comp)).

ProoOF. Let ¢, be a (n, n) X-positive formula of L™ and let o be a model of
A;-Comp.
By theorem 7A.1 there exists a formula ¢ (X, Y) of L™ such that for all £

i€, o AY[WF (V)& (% Y)
© AY[Y € HEU) & WF(Y)& (3, Y)].

For some formula ¢ of L™
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WF (X))o PU) = y(X)
for all X CA®". Then
PUYVEVEE E Ly AY[Y(Y) 7 ¢(& Y))).
We have for all ¥
PAUEIY[H(Y)rd(XY)] > PU)ES(Y) A ¢(x, Y)
for some Y € ¥#E(U)
by theorem 7F.1 > PUYEY(Y) A d(F Y)
for some Y €|
> AEIY[(Y)nd(% Y))

which shows that 3IY[y(Y)A8(Y,%)] is of-absolute. Thus I, €
Def (Mod (Ai-Comp)). a

We are unable to characterize the sets which belong to Def(Mod(A{-Comp))
in the case of arbitrary acceptable structures. Observe, however, that the
following theorem holds.

THEOREM 8. Let U =(A, R, -+, R.) be an acceptable structure. There exists
an inductive set I such that

Def(Mod (A;-Comp)) C #E (U, I).

Proor. Let I be an inductive binary relation which parametizes the unary
inductive relations (see theorem 5D.2). Let X € Def (Mod(A}-Comp)). Then for
all x,,-- -, x,

PAUYE(x), - x)EX & (A HEU), R, -, ROED(x), -, x,).

Let k be the highest arity of second order variables occurring in ¢. Then clearly
for all x,,- -, x,

PAUYE (X, x)EX S (A U HE"(U), R, RIEI(x,, -, x,).

By theorem 5D.4 for every I there exists a (I + 1)-ary inductive set I' which
parametrizes €' (U).

LetJ={(m,a):a € I",m = k}(here m is the m-th integer in the copy of w in
a coding scheme fixed throughout the proof). Clearly J is inductive.

By lemma 7E.2 for all x,,---, x,
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PAYE(x, - x)EX © Sat((d', T, ¢, {x1,- - -, x,))

where Sat, is a second order hyperelementary relation.

This easily implies that X is hyperelementary on (%,J). For some a
J={x:(a,x)E I} thus X € #E€(U,I).

It seems likely that the inclusion in the above theorem could be replaced by’
equality. We are, however, unable to prove it.

REFERENCES
1. K. R. Apt, w-models in analytical hierarchy, Bull. Acad. Polon. Sci. 20 (1972), 901-904.
2. Y. N. Moschovakis, Elementary Induction on Abstract Structures, North-Holland, Amster-
dam, 1974.

3. Y. N. Moschovakis, On monotone inductive definability, Fund. Math. 82 (1974), 39-83.

MATHEMATICAL CENTRE
2E BOERHAAVESTRAAT 49
AMSTERDAM 1005, THE NETHERLANDS



